#version 460 core layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in; const uint MAX_NUM_LIGHTS = 100u; struct cluster { vec4 min_point; vec4 max_point; uint count; uint light_indices[MAX_NUM_LIGHTS]; }; layout(std430, binding = 1) restrict buffer cluster_buf { cluster clusters[]; }; uniform float z_near; uniform float z_far; uniform mat4 inverse_proj_mat; uniform uvec3 grid_size; uniform uvec2 screen_dimensions; vec3 screen_to_view(vec2 screen_coord); vec3 line_intersection_with_z_plane(vec3 start_point, vec3 end_point, float z_distance); /* context: glViewport is referred to as the "screen" clusters are built based on a 2d screen-space grid and depth slices. Later when shading, it is easy to figure what cluster a fragment is in based on gl_FragCoord.xy and the fragment's z depth from camera */ void main() { uint tile_idx = gl_WorkGroupID.x + (gl_WorkGroupID.y * grid_size.x) + (gl_WorkGroupID.z * grid_size.x * grid_size.y); vec2 tile_size = screen_dimensions / grid_size.xy; // tile in screen-space vec2 min_tile_screen = gl_WorkGroupID.xy * tile_size; vec2 max_tile_screen = (gl_WorkGroupID.xy + 1) * tile_size; // convert tile to view space sitting on the near plane vec3 min_tile = screen_to_view(min_tile_screen); vec3 max_tile = screen_to_view(max_tile_screen); float plane_near = z_near * pow(z_far / z_near, gl_WorkGroupID.z / float(grid_size.z)); float plane_far = z_near * pow(z_far / z_near, (gl_WorkGroupID.z + 1) / float(grid_size.z)); // the line goes from the eye position in view space (0, 0, 0) // through the min/max points of a tile to intersect with a given cluster's near-far planes vec3 min_point_near = line_intersection_with_z_plane(vec3(0, 0, 0), min_tile, plane_near); vec3 min_point_far = line_intersection_with_z_plane(vec3(0, 0, 0), min_tile, plane_far); vec3 max_point_near = line_intersection_with_z_plane(vec3(0, 0, 0), max_tile, plane_near); vec3 max_point_far = line_intersection_with_z_plane(vec3(0, 0, 0), max_tile, plane_far); clusters[tile_idx].min_point = vec4(min(min_point_near, min_point_far), 0.0); clusters[tile_idx].max_point = vec4(max(max_point_near, max_point_far), 0.0); } // Returns the intersection point of an infinite line and a // plane perpendicular to the Z-axis vec3 line_intersection_with_z_plane(vec3 start_point, vec3 end_point, float z_distance) { vec3 direction = end_point - start_point; vec3 normal = vec3(0.0, 0.0, -1.0); // plane normal // skip check if the line is parallel to the plane. float t = (z_distance - dot(normal, start_point)) / dot(normal, direction); return start_point + t * direction; // the parametric form of the line equation } vec3 screen_to_view(vec2 screen_coord) { // normalize screen_coord to [-1, 1] and // set the NDC depth of the coordinate to be on the near plane. This is -1 by // default in OpenGL vec4 ndc = vec4(screen_coord / screen_dimensions * 2.0 - 1.0, -1.0, 1.0); vec4 view_coord = inverse_proj_mat * ndc; view_coord /= view_coord.w; return view_coord.xyz; }